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Abstract

We present measurements of the transverse momentum distribution of W

and Z bosons produced in p�p collisions at
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s = 1.8 TeV. The data were
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I. INTRODUCTION

At the Fermilab Tevatron,W and Z bosons are produced in high energy pp collisions. The
study of the production ofW and Z bosons provides an avenue to explore QCD, the theory of
strong interactions. The bene�ts of using intermediate vector bosons to study perturbative
QCD are large momentum transfer, distinctive event signatures, low backgrounds, and a
well understood electroweak vertex. In this paper we present measurements of the W and Z
transverse momentum distribution based on data taken by the D� collider detector during
the 1994{1996 Tevatron running period.

In the parton model at lowest order,W and Z intermediate vector bosons are produced in
head-on collisions of qq constituents of the proton and antiproton, and have little transverse
momentum (pT << MW , MZ). Consequently, the fact that observed bosons have large
transverse momentum (pT ) is attributed to the production of one or more gluons or quarks
along with the bosons. At high transverse momentum (pT > 20 GeV=c), the cross section is
dominated by the radiation of a single parton with large transverse momentum. Perturbative
QCD is therefore expected to be reliable in this regime [1]. At low transverse momentum
(pT < 10 GeV=c), multiple soft gluon emission is expected to dominate the cross section. A
soft gluon resummation technique [2{5] is therefore used to make QCD predictions. Neither
the resummed nor the �xed order calculation describes the distribution for all values of pT .
Conventionally, one switches from the resummed calculation to the �xed-order calculation
at pT � Q [2,5]. Thus, a measurement of the transverse momentum distribution may be
used to check the soft gluon resummation calculations in the low pT range, and to test the
perturbative QCD calculations at high pT .

II. INTRODUCTION TO THEORY

In standard �xed order perturbative QCD, the partonic cross section is calculated by
expanding in terms of the strong coupling constant (�s) [1], where each power of �s cor-
responds to the radiation of a single gluon or quark into the �nal state. This procedure
works well in the high pT region, where p2T � Q2. However, as pT ! 0, this �xed order
calculation of the cross section diverges due to the presence of correction terms that go as
logn(Q2=p2T). Physically, this failure of �xed order perturbation theory at low pT is due to
soft gluon radiation from the initial partons that is not properly accounted for in the stan-
dard expansion. This di�culty in performing the calculation can be remedied by reordering
the perturbation series through a technique called resummation, where the cross section is
calculated in terms of the large logarithms, rather than strictly in terms of powers of �s.
The resulting calculation is an all orders calculation, i.e., each piece in the new sum contains
terms to all orders in �s. However, the largest terms dropped in the latest calculation are
O(�2

s), so it is considered to be accurate to O(�2
s).

In �nal form, the calculation is carried out via a Fourier transform in impact parameter
space (b-space), with the following relation describing the di�erential cross section [2-5]:

d2�
dp2Tdy

� R
1

0
d2b ei~pT�

~bW (b;Q) + Y (b;Q) (1)
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where W (b;Q) contains the results of resumming the perturbative series, and Y (b;Q) adds
back to the calculation the pieces that are perturbative in �s, but not singular at pT = 0 [3].

Although the resummation technique extends the applicability of perturbative QCD to
lower values of pT, a more fundamental barrier is encountered when pT approaches �QCD. In
this region non-perturbative aspects of the strong force dominate the production of vector
bosons and in general perturbative QCD is expected to fail. This implies that the resummed
calculation becomes unde�ned above some value of b = bmax. In order to extend the calcula-
tion to the low pT region a parameterization which accounts for the non-perturbative e�ects
is introduced. This extension is accomplished by cutting o� the integral in Eq. 1 at some
value bmax and replacingW (b;Q) with W (b

�
; Q)e�SNP (b;Q), where b

�
= b=

p
1 + b=bmax. This

e�ectively cuts o� the contribution ofW (b;Q) near bmax, leaving the cross section dominated
by the function being introduced SNP (b;Q), known as the non-perturbative Sudakov form

factor. SNP has the generic renormalization group invariant form [3]:

SNP (b;Q) = h1(b; xA) + h1(b; xB) + h2(b) ln
�
Q2

Q2o

�
(2)

where xA and xB are the momentum fractions of the incoming partons, b is Fourier conjugate
to the transverse momentum (impact parameter), Qo is an arbitrary momentum scale and
h1(b; x) and h2(b) are phenomenological functions to be determined from experiment [2,4,5].
We used the Sudakov factor functional form from Ladinsky and Yuan [5]:

SLYNP (b;Q) = g1b
2 + g2b

2 ln
�
Q2

Q2o

�
+ g3b ln(100xAxB) (3)

The values of gi were determined by Ladinsky and Yuan by �tting to low energy Drell-
Yan data and a small sample of Z ! ee data from 1994-96 run at CDF [9], yielding g1 =
0:11+0:04

�0:03 GeV
2, g2 = 0:4+0:1

�0:2 GeV
2 and g3 = �1:5+0:1

�0:2 GeV
�1, where bmax = 0:5 GeV�1 and

Qo = 1:6 GeV, and the CTEQ2M pdfs were used.

III. MEASUREMENT OF THE DIFFERENTIAL CROSS SECTIONS

In this paper we present measurements of the pT spectra of W and Z bosons produced
in p�p collisions at

p
s = 1.8 TeV with the D� detector [6] at Fermilab. The transverse

momentum spectra of W and Z bosons have been measured previously by the UA1 [7],
UA2 [8], CDF [9] and D� [10] collaborations, but with smaller data samples than the ones
reported on here.

The W and Z samples have been selected from data taken during the 1994-96 run of the
Tevatron, and correspond to an integrated luminosity of � 80 pb�1 forW and � 110 pb�1 for
Z. The measurements of the W and Z boson pT spectra used the decay modesW ! e� and
Z ! e+e�. Electrons were detected in hermetic, uranium liquid-argon calorimeters with an
energy resolution of about 15%=

p
E(GeV). The calorimeters have a transverse granularity

of �� � �� = 0:1 � 0:1, where � is the pseudorapidity and � is the azimuthal angle.
Electrons were accepted in the regions j�j < 1:1 (central) and 1:5 < j�j < 2:6 (forward).
In reconstructing the pT of the W boson, we assume that the transverse momentum of the
neutrino is given by the calorimetric measurement of the missing transverse energy (E/T ) in

6



the event. Electrons from W and Z boson decays tend to be isolated. Thus, we required
the cut

Etot(0:4)�EEM(0:2)

EEM(0:2)
< 0:15;

where Etot(0:4) is the energy within �R < 0:4 of the cluster centroid (�R =
p
��2 +��2)

and EEM(0:2) is the energy in the EM calorimeter within �R < 0:2.
At trigger level, the Z analysis required two electrons, one with transverse energy (ET )

greater than 20 GeV and the second with ET greater than 16 GeV. O�-line for a \loose"
electron we required that ET > 25 GeV and that the transverse and longitudinal shower
shapes be consistent with those expected for an electron (based on test beam measurements).
For a \tight" electron we also required a good match between a reconstructed track in the
drift chamber system and the shower position in the calorimeter. For the Z boson sample
we required one electron to be \tight" and the other to be either \tight" or \loose"; at least
one of the two electrons had to be in the central region. To be acceptable candidates for Z
production, both decay electrons are required to be isolated. The dielectron invariant mass
was required to lie in the range 75� 105 GeV/c2. These selection cuts were passed by 6407
Z candidates.

In the case of the W boson analysis, a single electron with ET greater than 20 GeV
was required at trigger level. O�-line, a tighter requirement on the electron quality was
introduced to reduce the background level from QCD events, especially at high transverse
momentum. Electron identi�cation was based on a likelihood technique. Candidates were
�rst identi�ed by �nding isolated clusters of energy in the EM calorimeter with a matching
track in the central detector. We then cut on a likelihood constructed from the following four
variables: the �2 from a covariance matrix which measures the consistency of the calorimeter
cluster shape with that of an electron shower; the electromagnetic energy fraction (de�ned as
the ratio of the portion of the energy of the cluster found in the EM calorimeter to its total
energy); a measure of the consistency between the track position and the cluster centroid;
and the ionization dE=dx along the track. For the W boson sample we required one isolated
electron in the central region and E/T > 25 GeV. The event is rejected if there is a second
electron and the dielectron invariant mass lies in the range 75 � 105 GeV/c2. A total of
41173 W candidates passed these cuts in the central region.

The absolute normalization of the trigger and selection e�ciencies were determined using
Z ! e+e� D� collider events in which one of the electrons satis�ed the trigger and selection
criteria. The second electron then provided an unbiased sample with which to measure
the e�ciencies. The variation in the electron selection e�ciency as a function of pT has
been determined using a signal Monte Carlo sample from HERWIG, smeared for detector
resolutions and overlayed with events taken in random pp collisions (zero bias). A parametric
Monte Carlo program [11] was used to simulate the D� detector response and calculate the
kinematic and geometric acceptance as a function of pT . The detector resolutions used
in the Monte Carlo were determined from data, and were parameterized as a function of
energy and angle. The relative response of the hadronic and EM calorimeters was studied
using the transverse momentum of the Z boson as measured by the pT of the two electrons
compared to the hadronic recoil system in the Z event. This parameterized representation
of the D� detector was used to smear the predictions by detector e�ects and compare it to

7
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FIG. 1. Left: The background fraction to the W ! e� signal from QCD, Z ! ee , and top

production as a function of the pT of the W . Right: The background fraction from QCD processes

to the Z ! ee signal as a function of the pT of the Z.

our measured results.
The major source of background for both the W and the Z sample is QCD multi{jet and

photon{jet events: the amount of background in the samples and its shape as a function of
pT was obtained directly from D� data.

The total amount of QCD background in the inclusive W sample is � 1%. The nor-
malized QCD background was subtracted bin-by-bin from the W boson candidate sample
transverse momentum spectrum. Additional corrections were made to account for top quark
background events (0.1%) and for Z ! e+e� events (0.8%), where one of the electrons was
lost or not identi�ed. Since pWT was measured from the recoiling hadrons, the events origi-
nating from W ! �� (where � ! e��) contributed properly to the di�erential distribution;
this source of background therefore was included in the Monte Carlo simulation of the pWT
distribution.

The total background for the Z sample is � 2% for events in which both electrons are in
the central region and � 7% when one electron is in the central region and the other is in the
forward region. Backgrounds to Z ! ee production from Z ! �� , top quark and diboson
production have been estimated from Monte Carlo samples and are negligible. Figure 1
shows the background fractions as a function of pT for both the W and Z samples.

The result for the W pT distribution, shown in Figure 2, is compared to the theoretical
calculation by Arnold and Kau�man [2], smeared by detector resolutions. The W data
shows good agreement with this combined QCD perturbative and resummation calculation
over the whole range of pT . In the case of the Z, we correct the measured cross section
for the e�ects of detector smearing. Figure 3 compares the �nal, smearing-corrected Z
pT distribution to the calculation by Ladinsky and Yuan [5]. In addition, Figure 4 compares
the pZT measurement to the �xed-order perturbative theory [1]. In comparing to the NLO
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Right: Fractional di�erence between the Z data and the �xed-order calculation as a function of pT .
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IV. CONCLUSIONS

Using data taken with the D� detector during the 1994{1996 Tevatron collider run, we
have presented measurements of theW and Z transverse momentum distributions that agree
well with the combined QCD perturbative and resummation calculations.
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